SADLER MATHEMATICS METHODS UNIT 1

WORKED SOLUTIONS

Chapter 8 Trigonometric functions

Question 1 4 Question 2 3 Question 3 6 Question 4 5

Question 6

Question 5

4

4

Question	7
-,	-

3, 6

Question 8

3, 2

Question 9

4, 5

Question 10

2, 3

Question 11

3, 2.5

Question 12

1, 4

Exercise 8B

Question 1

- **a** 1
- **b** 2
- **c** 4
- **d** 3
- **e** 2
- **f** 3
- **g** 5
- **h** 3

- **a** 360°
- **b** 180°
- **c** 360°
- d 180°
- **e** 720°
- **f** 120°
- **g** 90°
- **h** 1080°
- **i** 180°

- a 2π
- \mathbf{b} π
- c 2π
- d $\frac{\pi}{2}$
- e $\frac{\pi}{3}$
- f $\frac{2\pi}{3}$
- g 4π
- $\boldsymbol{h} \qquad \boldsymbol{\pi}$
- **i** 0.5

- **a** Max at $(\frac{\pi}{2}, 1)$. Min at $(\frac{3\pi}{2}, -1)$.
- **b** Max at $(\frac{\pi}{2}, 3)$. Min at $(\frac{3\pi}{2}, 1)$.
- **c** Max at $(\frac{3\pi}{2}, 1)$. Min at $(\frac{\pi}{2}, -1)$.
- **d** Max at $(\frac{\pi}{4}, 4)$ and at $(\frac{5\pi}{4}, 4)$. Min at $(\frac{3\pi}{4}, 2)$ and at $(\frac{7\pi}{4}, 2)$.
- **e** Max at $(\frac{3\pi}{4}, 4)$. Min at $(\frac{7\pi}{4}, 2)$.

- a $3\sin x$ has a max value of 3 when $x = 90^{\circ}$.
- **b** x-30=90 : x=120

 $2\sin(x-30)$ has a max value of 2 when $x = 120^{\circ}$.

C

$$x + 30 = 90$$
 : $x = 60$

 $2\sin(x+30)$ has a max value of 2 when $x = 60^{\circ}$.

d $-3\sin x$ has a max value of 3 when $x = 270^{\circ}$.

Question 6

- **a** 3, $\frac{\pi}{4}$
- **b** 5, $\frac{3\pi}{2}$
- c $2, \frac{11\pi}{6}$
- **d** $3, \frac{\pi}{6}$

- **a** Amplitude = 2 : a = 2
- **b** Amplitude = 3 : a = 3
- **c** Amplitude = 3 but wave is rejected $\therefore a = -3$
- **d** Amplitude ≈ 1.3 but wave is rejected $\therefore a \approx -1.3$

- **a** Amplitude is 3 : a = 3
- **b** Amplitude is 2 but wave is rejected $\therefore a = -2$

Question 9

- **a** Period is π , $\tan 45^{\circ} = 2$ $\therefore a = 2$
- **b** Period is 180°, but curve is rejected. $\tan 45 = -1$ $\therefore a = -1$

- Amplitude = 2 : a = 2 3 complete curves in $2\pi \rightarrow b = 3$ $y = 2\sin 3x$
- **b** Wave is rejected a < 0Amplitude is 3 : a = -3In 2π , 2 complete curves b = 2 $y = -3\sin 2x$
- Amplitude is 2 : a = 2In 360°, 6 complete curves b = 6 $y = 2\sin 6x$
- Amplitude is 3 : a = 3Period is $3 \to \frac{2\pi}{b}$ $\therefore b = \frac{2\pi}{3}$ $y = 3\sin \frac{2\pi}{3}x$

a Amplitude = 1 : a = 1 (max at x = 0, a > 0)

Period =
$$\pi \rightarrow \frac{2\pi}{b} = \pi$$

$$\therefore b = 2$$

$$y = \cos 2x$$

b Amplitude = 3

Minimum value when x = 0 : a = -3

Period: 3 curves in 2π , b = 3 $\therefore y = -3\cos 3x$

Amplitude is 3 but minimum value when
$$x = 0$$
 : $a = -3$
Period: 2 curves in $2\pi, b = 2$

 $\therefore y = -3\cos 3x$

d Amplitude = 2 (max at
$$x = 0$$
, $a > 0$)

Period =
$$4 \rightarrow \frac{2\pi}{b} = 4$$

$$\therefore b = \frac{\pi}{2}$$

$$y = 2\cos\frac{\pi}{2}x$$

Question 12

a Amplitude = 2 : a = 2

Solid curve is 30° to the right.

$$\therefore b = 30$$

Period is 360°, so next value of b = 30 + 360

$$=390^{\circ}$$

b
$$y = -2\sin(x - 210)$$

Period: $\frac{2\pi}{\pi} = 2$

Amplitude: 3

Question 14

Period: $\frac{2\pi}{\frac{\pi}{2}} = 4$

Amplitude: 5

Question 15

Exercise 8C

Question 1

tan 190° is in the 3rd quadrant and is positive

Question 2

cos 310° is in the 4th quadrant and is positive

Question 3

 $\tan (-190^{\circ})$ is in the 2nd quadrant and is negative

Question 4

sin (-170°) is in the 3rd quadrant and is negative

Question 5

 $\sin 555^{\circ} = \sin 195^{\circ}$ is in the 3rd quadrant and is negative

Question 6

cos 190° is in the 3rd quadrant and is negative

Question 7

 $\tan \frac{\pi}{10}$ is in the 1st quadrant and is positive

 $\sin \frac{4\pi}{5}$ is in the 2nd quadrant and is positive

Question 9

 $\cos \frac{\pi}{10}$ is in the 1st quadrant and is positive

Question 10

 $\sin \left(-\frac{\pi}{5}\right)$ is in the 4th quadrant and is negative

Question 11

 $\cos \frac{9\pi}{10}$ is in the 2nd quadrant and is negative

Question 12

 $\tan \frac{13\pi}{5} = \tan \frac{3\pi}{5}$ is in the 2nd quadrant and is negative

Question 13

 $\sin 140^{\circ}$ is in the 2nd quadrant and makes a 40° angle with the *x*-axis. $\therefore \sin 40^{\circ}$

Question 14

sin 250° is in the 3rd quadrant and makes a 70° angle below the *x*-axis. \therefore -sin 70°

 $\sin 340^{\circ}$ is in the 4th quadrant and makes a 20° angle below the *x*-axis. $\therefore -\sin 20^{\circ}$

Question 16

 $\sin 460^\circ = \sin 100^\circ$ is in the 2nd quadrant and is 80° above the *x*-axis. $\therefore \sin 80^\circ$

Question 17

 $\sin \frac{5\pi}{6}$ is in the 2nd quadrant and is $\frac{\pi}{6}$ above the *x*-axis.

 $\therefore \sin \frac{\pi}{6}$

Question 18

 $\sin \frac{7\pi}{6}$ is in the 3rd quadrant and is $\frac{\pi}{6}$ below the *x*-axis.

 $\therefore -\sin\frac{\pi}{6}$

Question 19

 $\sin \frac{11\pi}{5}$ is in the 1st quadrant and is $\frac{\pi}{5}$ above the x-axis.

 $\therefore \sin \frac{\pi}{5}$

 $\sin \left(-\frac{\pi}{5}\right)$ is in the 4th quadrant and is $\frac{\pi}{5}$ below the *x*-axis.

$$\therefore -\sin\frac{\pi}{5}$$

Question 21

 $\cos 100^{\circ}$ is in the 2nd quadrant and is 80° above the negative *x*-axis. $\therefore -\cos 80^{\circ}$

Question 22

 $\cos 200^{\circ}$ is in the 3rd quadrant and is 20° below the negative *x*-axis. $\therefore -\cos 20^{\circ}$

Question 23

 $\cos 300^{\circ}$ is in the 4th quadrant and is 60° below the positive *x*-axis. $\therefore \cos 60^{\circ}$

Question 24

 $\cos (-300^{\circ}) = \cos 60^{\circ}$ in the 1st quadrant.

Question 25

 $\cos \frac{4\pi}{5}$ is in the 2nd quadrant and is $\frac{\pi}{5}$ above the negative *x*-axis.

$$\therefore -\cos{(\frac{\pi}{5})}$$

 $\cos \frac{9\pi}{10}$ is in the 2nd quadrant and is $\frac{\pi}{10}$ above the negative *x*-axis.

$$\therefore -\cos\frac{\pi}{10}$$

Question 27

 $\cos \frac{11\pi}{10}$ is in the 3rd quadrant and is $\frac{\pi}{10}$ below the negative x-axis.

$$\therefore -\cos\frac{\pi}{10}$$

Question 28

 $\cos \frac{21\pi}{10} = \cos \frac{\pi}{10}$ and is in the 1st quadrant.

Question 29

 $\tan 100^{\circ}$ is in the 2nd quadrant and is 80° above the x-axis.

Question 30

tan 200° is in the 3rd quadrant and is 20° below the x-axis.

Question 31

 $\tan (-60^{\circ})$ is in the 4th quadrant and is 60° below the *x*-axis.

tan (-160°) is in the 3rd quadrant and is 20° below the *x*-axis. \therefore tan 20°

Question 33

 $\tan \frac{6\pi}{5}$ is in the 3rd quadrant and is $\frac{\pi}{5}$ below the *x*-axis.

 $\therefore \tan \frac{\pi}{5}$

Question 34

 $\tan \left(-\frac{6\pi}{5}\right)$ is in the 2nd quadrant and is $\frac{\pi}{5}$ above the *x*-axis.

 \therefore -tan $\frac{\pi}{5}$

Question 35

 $\tan \frac{11\pi}{5} = \tan \frac{\pi}{5}$ is in the 1st quadrant and is $\frac{\pi}{5}$ above the x-axis.

 $\therefore \tan \frac{\pi}{5}$

Question 36

 $\tan \left(-\frac{21\pi}{5}\right) = \tan \left(-\frac{\pi}{5}\right)$ is in the 4th quadrant and is $\frac{\pi}{5}$ below the x-axis.

 \therefore - tan $\frac{\pi}{5}$

 $\sin 300^{\circ}$, in 4th quadrant \rightarrow negative.

Reference angle = 60°

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\therefore \sin 300^\circ = -\frac{\sqrt{3}}{2}$$

Question 38

tan 210°, in 3rd quadrant \rightarrow positive.

Reference angle = 30°

$$\tan 210^\circ = \frac{1}{\sqrt{3}}$$

Question 39

 $\cos 240^{\circ}$, in 3rd quadrant \rightarrow negative.

Reference angle = 60°

$$\cos 240^{\circ} = -\frac{1}{2}$$

Question 40

$$\cos 270^{\circ} = 0$$

Question 41

$$\sin 180^{\circ} = 0$$

$$\cos 390^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

 $\sin (-135^{\circ})$, in 3rd quadrant \rightarrow negative.

Reference angle = 45°

$$\sin (-135^\circ) = -\frac{1}{\sqrt{2}}$$

Question 44

 $\cos (-135^{\circ})$, in 3rd quadrant \rightarrow negative.

Reference angle = 45°

$$\cos (-135^\circ) = -\frac{1}{\sqrt{2}}$$

Question 45

 $\sin \frac{7\pi}{6}$, in 3rd quadrant \rightarrow negative.

Reference angle = $\frac{\pi}{6}$

$$\sin\frac{7\pi}{6} = -\frac{1}{2}$$

Question 46

 $\cos \frac{7\pi}{6}$, in 3rd quadrant \rightarrow negative.

Reference angle = $\frac{\pi}{6}$

$$\cos\frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$$

 $\tan \frac{7\pi}{6}$, in 3rd quadrant \rightarrow positive.

Reference angle = $\frac{\pi}{6}$

$$\tan \frac{7\pi}{6} = \frac{1}{\sqrt{3}}$$

Question 48

 $\sin \frac{7\pi}{4}$, in 4th quadrant \rightarrow negative.

Reference angle = $\frac{\pi}{4}$

$$\sin\frac{7\pi}{4} = -\frac{1}{\sqrt{2}}$$

Question 49

 $\cos{(-\frac{7\pi}{4})}$, in 1st quadrant \rightarrow positive.

Reference angle = $\frac{\pi}{4}$

$$\cos{(-\frac{7\pi}{4})} = \frac{1}{\sqrt{2}}$$

Question 50

$$\tan 6\pi = \tan 2\pi = 0$$

$$\sin\frac{5\pi}{2} = \sin\frac{\pi}{2} = 1$$

 $\cos{(-\frac{7\pi}{3})} = \cos{(-\frac{\pi}{3})}$, in 4th quadrant \rightarrow positive.

Reference angle =
$$\frac{\pi}{3}$$

$$\cos\left(-\frac{7\pi}{3}\right) = \frac{1}{2}$$

Exercise 8D

Question 1

$$\cos x = \frac{1}{2}$$
$$x = 60^\circ, 300^\circ$$

Reference angle = 60°

Question 2

$$\sin x = -\frac{1}{2}$$

$$x = 210^\circ, 330^\circ$$

Reference angle = 30°

Question 3

$$\tan x = 1$$
$$x = 45^{\circ}, 225^{\circ}$$

Question 4

$$\sin x = -\frac{1}{\sqrt{2}}$$
$$x = 225^{\circ}, 315^{\circ}$$

$$\sin x = \frac{1}{\sqrt{2}}$$
$$x = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$\cos x = -\frac{1}{\sqrt{2}}$$
$$x = \frac{3\pi}{4}, \frac{5\pi}{4}$$

Reference angle =
$$\frac{\pi}{4}$$

Question 7

$$\tan x = -1$$
$$x = \frac{3\pi}{4}, \frac{7\pi}{4}$$

Question 8

$$\tan x = \sqrt{3}$$
$$x = \frac{\pi}{3}, \frac{4\pi}{3}$$

Question 9

$$\cos x = \frac{\sqrt{3}}{2}$$
$$x = -30^{\circ}, 30^{\circ}$$

Question 10

$$\sin x = -1$$
$$x = -90^{\circ}$$

$$\tan x = -\frac{1}{\sqrt{3}}$$
$$x = -30^{\circ}, 150^{\circ}$$

$$\sin x = 0$$

 $x = -180^{\circ}, 0^{\circ}, 180^{\circ}$

Question 13

$$\sin x = \frac{\sqrt{3}}{2}$$
$$x = \frac{\pi}{3}, \frac{2\pi}{3}$$

Question 14

$$\cos x = -\frac{1}{2}$$
$$x = -\frac{2\pi}{3}, \frac{2\pi}{3}$$

Question 15

$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\cos x = 0$$
$$x = -\frac{\pi}{2}, \frac{\pi}{2}$$

$$\tan x = 1.5$$
$$x = \pi + 0.98$$

Question 18

$$11+25\cos x = 0$$

$$25\cos x = -11$$

$$\cos x = -\frac{11}{25} = -0.44$$

$$x = -116.1^{\circ}, 116.1^{\circ}$$

Question 19

$$\tan 2x = \frac{1}{\sqrt{3}}$$

$$2x = 30^{\circ}, 210^{\circ}$$

$$x = 15^{\circ}, 105^{\circ}$$

$$0 \le x \le 180^{\circ}$$

$$0 \le 2x \le 360^{\circ}$$

Question 20

$$\cos 4x = \frac{\sqrt{3}}{2}$$

$$4x = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{23\pi}{6}$$

$$0 \le x \le \pi$$

$$0 \le 4x \le 4\pi$$

$$x = \frac{\pi}{24}, \frac{11\pi}{24}, \frac{13\pi}{24}, \frac{23\pi}{24}$$
Reference angle = $\frac{\pi}{6}$

$$\sin 3x = \frac{1}{2}$$

$$3x = -210^{\circ}, 30^{\circ}, 150^{\circ}$$

$$x = -70^{\circ}, 10^{\circ}, 50^{\circ}$$

$$-270^{\circ} \le 3x \le 270^{\circ}$$

$$2\sqrt{3}\sin 2x = 3$$

$$\sin 2x = \frac{3}{2\sqrt{3}}$$
$$= \frac{\sqrt{3}}{2}$$

$$2x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}$$

$$x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{7\pi}{6}, \frac{4\pi}{3}$$

$$0 \le x \le 2\pi$$

$$0 \le 2x \le 4\pi$$

Reference angle =
$$\frac{\pi}{3}$$

Question 23

$$2\cos 3x + \sqrt{3} = 0$$

$$\cos 3x = -\frac{\sqrt{3}}{2}$$

$$3x = \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{17\pi}{6}, \frac{19\pi}{6}, \frac{29\pi}{6}, \frac{31\pi}{6}$$

$$x = \frac{5\pi}{18}, \frac{7\pi}{18}, \frac{17\pi}{18}, \frac{19\pi}{18}, \frac{29\pi}{18}, \frac{31\pi}{18}$$

$$0 \le x \le 2\pi$$

$$0 \le 3x \le 6\pi$$

Reference angle =
$$\frac{\pi}{6}$$

$$(\sin x + 1)(2\sin x - 1) = 0$$

$$\sin x = -1 \quad \text{or} \quad 2\sin x = 1$$

$$x = \frac{3\pi}{2} \qquad \sin x = \frac{1}{2}$$

$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\therefore x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$$

$$\sin^2 x = \frac{1}{2}$$

$$\sin x = \pm \frac{1}{\sqrt{2}}$$

$$x = 45^\circ, 135^\circ, 225^\circ, 315^\circ$$

$$0^{\circ} \le x \le 360^{\circ}$$

Reference angle = 45°

Question 26

$$4\cos^{2} x - 3 = 0$$

$$\cos^{2} x = \frac{3}{4}$$

$$\cos x = \pm \frac{\sqrt{3}}{2}$$

$$x = -\frac{5\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}$$

$$-\pi \le x \le \pi$$

Reference angle = $\frac{\pi}{6}$

Question 27

 $\sin x = 0$

$$(\sin x)(2\cos x - 1) = 0$$

Reference angle = 60°

$$x = -180^{\circ}, 0^{\circ}, 180^{\circ}$$

or

 $2\cos x - 1 = 0$

$$\cos x = \frac{1}{2}$$

 $x = -60^{\circ}, 60^{\circ}$

$$\therefore x = -180^{\circ}, -60^{\circ}, 0^{\circ}, 60^{\circ}, 180^{\circ}$$

$$2\cos^2 x + \cos x - 1 = 0$$

$$-\pi \le x \le \pi$$

$$(2\cos x - 1)(\cos x + 1) = 0$$

Reference angle =
$$\frac{\pi}{3}$$

$$2\cos x - 1 = 0 \quad \text{or} \quad \cos x + 1 = 0$$

or
$$\cos x + 1 =$$

$$\cos x = \frac{1}{2} \qquad \qquad \cos x = -1$$

$$\cos x = -1$$

$$x = -\frac{\pi}{3}, \frac{\pi}{3} \qquad x = -\pi, \pi$$

$$x = -\pi$$
, π

$$\therefore x = -\pi, -\frac{\pi}{3}, \frac{\pi}{3}, \pi$$

$$\sin(x + \frac{\pi}{3}) = \frac{1}{\sqrt{2}}$$

$$x + \frac{\pi}{3} = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$x = -\frac{\pi}{12}, \frac{5\pi}{12}$$

$$-\frac{\pi}{12}$$
 is out of domain but $-\frac{\pi}{12} + 2\pi = \frac{23\pi}{12}$

$$\therefore x = \frac{5\pi}{12}, \frac{23\pi}{12}$$

$$0 \le x \le 2\pi$$

$$\frac{\pi}{3} \le x + \frac{\pi}{3} \le \frac{7\pi}{3}$$

Reference angle =
$$\frac{\pi}{4}$$

Exercise 8E

Question 1

$$\sin x = \frac{1}{4}$$
 $-180^{\circ} \le x \le 180^{\circ}$
 $x = 14.5^{\circ}, 165.5^{\circ}$

Question 2

$$\sin^{2} x = \frac{1}{4} \qquad -\pi \le x \le \pi$$

$$\sin x = \pm \frac{1}{2}$$

$$x = -\frac{5\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}$$

Question 3

$$\sin x = \sin^2 x + \cos^2 x$$

$$\sin x = 1$$

$$\therefore x = \frac{\pi}{2}$$

$$(2\sin x - 1)\cos x = 0$$

$$2\sin x - 1 = 0 \quad \text{or} \quad \cos x = 0$$

$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}, \frac{5\pi}{6} \qquad x = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$$

$$\sin x + 2\sin^2 x = 0$$

$$\sin x (1 + 2\sin x) = 0$$

$$\sin x = 0 \quad \text{or} \quad 1 + 2\sin x = 0$$

$$x = 0^\circ, 180^\circ, 360^\circ \quad \sin x = -\frac{1}{2}$$

$$x = 210^\circ, 330^\circ$$

$$x = 0^\circ, 180^\circ, 210^\circ, 330^\circ, 360^\circ$$

Question 6

$$(2\cos x + 1)(5\sin x - 1) 0^{\circ} \le x \le 360^{\circ}$$

$$2\cos x + 1 = 0 \text{or} 5\sin x - 1 = 0$$

$$\cos x = -\frac{1}{2} \sin x = \frac{1}{5}$$

$$x = 120^{\circ}, 240^{\circ} x = 11.5^{\circ}, 168.5^{\circ}$$

$$x = 11.5^{\circ}, 120^{\circ}, 168.5^{\circ}, 240^{\circ}$$

$$8\sin^{2} x + 4\cos^{2} x = 7$$

$$4\sin^{2} x + 4\sin^{2} x + 4\cos^{2} x - 7 = 0$$

$$4\sin^{2} x + 4(\sin^{2} x + \cos^{2} x) - 7 = 0$$

$$4\sin^{2} x + 4 - 7 = 0$$

$$4\sin^{2} x - 3 = 0$$

$$4\sin^{2} x = 3$$

$$\sin^{2} x = \frac{3}{4}$$

$$\sin x = \pm \frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$$

$$\tan^{2} x + \tan x = 2$$

$$\tan^{2} x + \tan x - 2 = 0$$

$$(\tan x + 2)(\tan x - 1) = 0$$

$$\tan x + 2 = 0 \quad \text{or} \quad \tan x - 1 = 0$$

$$\tan x = -2 \quad \tan x = 1$$

$$x = -63.4^{\circ}, 116.6^{\circ} \quad x = -135^{\circ}, 45^{\circ}$$

$$x = -135^{\circ}, -63.4^{\circ}, 45^{\circ}, 116.6^{\circ}$$

$$5-4\cos x = 4\sin^{2} x$$

$$4\sin^{2} x + 4\cos x - 5 = 0$$

$$4(1-\cos^{2} x) + 4\cos x - 5 = 0$$

$$4-4\cos^{2} x + 4\cos x - 5 = 0$$

$$-4\cos^{2} x + 4\cos x - 1 = 0$$

$$-1(4\cos^{2} x - 4\cos x + 1) = 0$$

$$4\cos^{2} x - 4\cos x + 1 = 0$$

$$(2\cos x - 1)^{2} = 0$$

$$2\cos x - 1 = 0$$

$$\cos x = \frac{1}{2}$$

$$x = -60^{\circ}, 60^{\circ}$$

$$3 = 2\cos^2 x + 3\sin x$$

$$3 = 2(1 - \sin^2 x) + 3\sin x$$

$$3 = 2 - 2\sin^2 x + 3\sin x$$

Reference Angle:
$$\frac{\pi}{6}$$

$$2\sin^2 x - 3\sin x + 1 = 0$$

$$(2\sin x - 1)(\sin x - 1) = 0$$

$$2\sin x - 1 = 0 \qquad \text{or} \qquad$$

$$\sin x - 1 = 0$$

$$\sin x = \frac{1}{2}$$

$$\sin x = 1$$

$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}$$
 $x = \frac{\pi}{2}, \frac{5\pi}{2}$

$$x = \frac{\pi}{2}, \frac{5\pi}{2}$$

$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{5\pi}{2}, \frac{17\pi}{6}$$

Exercise 8F

Question 1

```
\sin 2x \cos x + \cos 2x \sin x
= \sin (2x + x)
= \sin 3x
```

Question 2

```
\cos 3x \cos x + \sin 3x \sin x
= \cos (3x - x)
= \cos 2x
```

Question 3

```
\sin 5x \cos x - \cos 5x \sin x
= \sin (5x - x)
= \sin 4x
```

```
\cos 7x \cos x - \sin 7x \sin x
= \cos (7x + x)
= \cos 8x
```

$$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ})$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}$$

$$= \frac{(\sqrt{3} + 1)}{(2\sqrt{2})} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\sqrt{2}(\sqrt{3} + 1)}{4}$$

$$\tan 15^{\circ} = \tan (45^{\circ} - 30^{\circ})$$

$$= \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \times \tan 30^{\circ}}$$

$$= 1 - \frac{1}{\sqrt{3}} \div (1 + 1 \times \frac{1}{\sqrt{3}})$$

$$= \frac{\sqrt{3} - 1}{\sqrt{3}} \div \frac{\sqrt{3} + 1}{\sqrt{3}}$$

$$= \frac{(\sqrt{3} - 1)}{(\sqrt{3} + 1)} \times \frac{(\sqrt{3} - 1)}{(\sqrt{3} - 1)}$$

$$= \frac{3 - 2\sqrt{3} + 1}{3 - 1}$$

$$= \frac{4 - 2\sqrt{3}}{2}$$

$$= 2 - \sqrt{3}$$

$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ})$$

$$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\sqrt{2}(\sqrt{3} + 1)}{4}$$

$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ})$$

$$\cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$$

$$= \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

$$= \frac{\sqrt{2}(\sqrt{3} - 1)}{4}$$

$$\tan 75^{\circ} = \tan (45^{\circ} + 30^{\circ})$$

$$= \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}}$$

$$= 1 + \frac{1}{\sqrt{3}} \div (1 - 1 \times \frac{1}{\sqrt{3}})$$

$$= \frac{\sqrt{3} + 1}{\sqrt{3}} \div \frac{\sqrt{3} - 1}{\sqrt{3}}$$

$$= \frac{(\sqrt{3} + 1)}{(\sqrt{3} - 1)} \times \frac{(\sqrt{3} + 1)}{(\sqrt{3} + 1)}$$

$$= \frac{3 + 2\sqrt{3} + 1}{3 - 1}$$

$$= \frac{4 + 2\sqrt{3}}{2}$$

$$= 2 + \sqrt{3}$$

$$2\sin(\theta + 45^{\circ}) = 2[\sin\theta\cos 45^{\circ} + \cos\theta\sin 45^{\circ}]$$

$$= 2\sin\theta\cos 45^{\circ} + 2\cos\theta\sin 45^{\circ}$$

$$a\sin\theta + b\cos\theta = 2\sin\theta\cos 45^{\circ} + 2\cos\theta\sin 45^{\circ}$$

$$a = 2\cos 45^{\circ} \qquad b = 2\sin 45^{\circ}$$

$$= \frac{2\times 1}{\sqrt{2}} \qquad = \sqrt{2}$$

$$= \frac{2}{\sqrt{2}}$$

$$= \sqrt{2}$$

$$8\cos(\theta - \frac{\pi}{3}) = 8\cos\theta\cos\frac{\pi}{3} + 8\sin\theta\sin\frac{\pi}{3}$$

$$c\sin\theta + d\cos\theta = 8\cos\theta\cos\frac{\pi}{3} + 8\sin\theta\sin\frac{\pi}{3}$$

$$d\cos\theta = 8\cos\theta\cos\frac{\pi}{3} \qquad c\sin\theta = 8\sin\theta\sin\frac{\pi}{3}$$

$$d = 8\cos\frac{\pi}{3} \qquad c = 8\sin\frac{\pi}{3}$$

$$= 8 \times \frac{1}{2} \qquad = 8 \times \frac{\sqrt{3}}{2}$$

$$= 4 \qquad = 4\sqrt{3}$$

$$4\cos(\theta + 30^{\circ}) = 4\cos\theta\cos 30^{\circ} - 4\sin\theta\sin 30^{\circ}$$

$$e\cos\theta = 4\cos\theta\cos 30^{\circ} \qquad f\sin\theta = -4\sin\theta\sin 30^{\circ}$$

$$e = 4\cos 30^{\circ} \qquad f = -4\sin 30^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = -4 \times \frac{1}{2}$$

$$= 2\sqrt{3} \qquad = -2$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$= \frac{5\sqrt{3}}{1} + \frac{(-\sqrt{3})}{4} \div (1 - 5\sqrt{3} \times (\frac{-\sqrt{3}}{4}))$$

$$= \frac{20\sqrt{3} - \sqrt{3}}{4} \div (1 + \frac{15}{4})$$

$$= \frac{19\sqrt{3}}{4} \div \frac{19}{4}$$

$$= \frac{19\sqrt{3}}{4} \times \frac{4}{19}$$

$$= \sqrt{3}$$

$$\tan \frac{\pi}{3} = \sqrt{3}$$

$$\tan (\frac{\pi}{3} + \pi) = \sqrt{3}$$

$$\therefore A + B = \frac{4\pi}{3}$$

$$\sin A = \frac{4}{5} \qquad \cos B = \frac{5}{13}$$

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$

We need to find $\cos A$ and $\sin B$

By Pythagoras, the missing length is 3

$$\therefore \cos A = \frac{3}{5}$$

By Pythagoras, the missing length is 5

$$\therefore \sin B = \frac{12}{13}$$

а

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$= \frac{4}{5} \times \frac{5}{13} + \frac{3}{5} \times \frac{12}{13}$$

$$= \frac{56}{65}$$

b

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$
3 5 4 12

$$=\frac{63}{65}$$

$$\sin D = \frac{7}{25} \qquad \sin E = \frac{3}{5}$$
$$\sin (D - E) = \sin D \cos E - \cos D \sin E$$

We need to find $\cos D$ and $\cos E$

By Pythagoras, the missing length is 24

$$\therefore \cos D = \frac{24}{25}$$

By Pythagoras, the missing length is 4

$$\therefore \cos E = \frac{4}{5}$$

а

$$\sin(D-E) = \sin D \cos E - \cos D \sin E$$

$$= \frac{7}{25} \times \frac{4}{5} - \frac{24}{25} \times \frac{3}{5}$$

$$= -\frac{44}{125}$$

b

$$\cos(D+E) = \cos D \cos E - \sin D \sin E$$

$$= \frac{24}{25} \times \frac{4}{5} - \frac{7}{25} \times \frac{3}{5}$$

$$= \frac{75}{125}$$

$$= \frac{3}{5}$$

$$\sin(x + \frac{\pi}{2}) = \sin x \cos \frac{\pi}{2} + \cos x \sin \frac{\pi}{2}$$
$$= \sin x \times 0 + \cos x \times 1$$
$$= \cos x$$

a
$$\sin(x+2\pi) = \sin x \cos 2\pi + \cos x \sin 2\pi$$
$$= \sin x \times 1 + \cos x \times 0$$
$$= \sin x$$

b
$$\sin(x-2\pi) = \sin x \cos 2\pi - \cos x \sin 2\pi$$
$$= \sin x \times 1 - \cos x \times 0$$
$$= \sin x$$

Question 18

$$\cos(x+2\pi) = \cos x \cos 2\pi - \sin x \sin 2\pi$$
$$= \cos x \times 1 - \sin x \times 0$$
$$= \cos x$$

Question 19

$$\tan(x+\pi) = \frac{\tan x + \tan \pi}{1 - \tan x \tan \pi}$$

$$= \frac{\tan x + 0}{1 - \tan x \times 0}$$

$$= \frac{\tan x}{1}$$

$$= \tan x$$

$$\tan (0-x) = \frac{\tan 0 - \tan x}{1 + \tan 0 \tan x}$$

$$= \frac{0 - \tan x}{1 + 0 \tan x}$$

$$= \frac{-\tan x}{1}$$

$$= -\tan x$$

Missing side 12

$$\int_{0}^{5} \cos A = -\frac{12}{13}$$
$$\tan A = -\frac{5}{12}$$

Missing side 5

$$\sin B = \frac{3}{5}$$

$$\cos B = -\frac{4}{5}$$

(Remember for obtuse angles $\sin > 0$, $\cos < 0$, $\tan < 0$)

а

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
$$= \frac{5}{13} \times \left(-\frac{4}{5}\right) + \left(-\frac{12}{13}\right) \times \frac{3}{5}$$
$$= -\frac{56}{65}$$

b

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$
$$= \left(-\frac{12}{13}\right) \times \left(-\frac{4}{5}\right) + \frac{5}{13} \times \frac{3}{5}$$
$$= \frac{63}{65}$$

C

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$= \left(-\frac{5}{12} + (-\frac{3}{4})\right) \div \left(1 - \left(-\frac{5}{12}\right) \times \left(-\frac{3}{4}\right)\right)$$

$$= \left(-\frac{14}{12}\right) \div \left(1 - \frac{15}{48}\right)$$

$$= -\frac{56}{33}$$

$$\sin x \cos \frac{\pi}{6} + \cos x \sin \frac{\pi}{6} = \sin(x + \frac{\pi}{6})$$

$$\sin(x + \frac{\pi}{6}) = \frac{1}{\sqrt{2}}$$

$$0 \le x \le 2\pi$$

$$x + \frac{\pi}{6} = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$x = \frac{\pi}{4} - \frac{\pi}{6}, \frac{3\pi}{4} - \frac{\pi}{6}$$

$$= \frac{\pi}{12}, \frac{7\pi}{12}$$

Question 23

$$\cos x \cos 20^{\circ} + \sin x \sin 20^{\circ} = \cos (x - 20^{\circ})$$

$$\cos (x - 20^{\circ}) = \frac{1}{2}$$

$$(x - 20^{\circ}) = 60^{\circ}, 300^{\circ}$$

$$x = 80^{\circ}, 320^{\circ}$$

$$\sin x \cos 70 + \cos x \sin 70 = 0.5$$
 $-180^{\circ} \le x \le 180^{\circ}$
 $\sin (x + 70) = 0.5$ $-110^{\circ} \le x + 70^{\circ} \le 250^{\circ}$
 $x + 70 = 30,150$
 $x = -40^{\circ},80^{\circ}$

$$\sin(x+30) = \cos x$$

$$\sin x \cos 30 + \cos x \sin 30 = \cos x$$

$$\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x = \cos x$$

$$\frac{\sqrt{3}}{2} \sin x = \frac{1}{2} \cos x$$

$$\sqrt{3} \sin x = \cos x$$

$$\sqrt{3} \tan x = 1$$

$$\tan x = \frac{1}{\sqrt{3}}$$

$$x = 30^{\circ}, 210^{\circ}$$

Miscellaneous exercise eight

Question 1

Amplitude: 5

Period: 2π

Question 2

Amplitude: 7

Period: 2π

Question 3

Amplitude: 3

Period: 2π

Question 4

Amplitude: 1

Period: $\frac{2\pi}{2} = \pi$

Question 5

Amplitude: 1

Period: $\frac{2\pi}{3}$

Question 6

Amplitude: 1

Period: $\frac{2\pi}{0.5} = 4\pi$

Amplitude: 3

Period: $\frac{2\pi}{4} = \frac{\pi}{2}$

Question 8

Amplitude: 4

Period: $\frac{2\pi}{5}$

Question 9

Amplitude: 2

Period: $\frac{2\pi}{\pi} = 2$

θ	$-\frac{3\pi}{4}$	$-\frac{2\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{4\pi}{3}$	$\frac{7\pi}{3}$	$\frac{9\pi}{4}$	11π
sinθ	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0
cos θ	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	-1
tan 0	1	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\sqrt{3}$	1	0

a
$$y = 3x - a$$
 $m = 3$

$$y = x - b \qquad m = 1$$

Neither parallel or perpendicular

b
$$y = 0.5x + c$$
 $m = 0.5$

$$y = 0.5x + \frac{d}{2} \quad m = 0.5$$

Parallel

c
$$y = 0.5x + \frac{e}{2}$$
 $m = 0.5$

$$y = -2x + 1 \qquad m = -2$$

Perpendicular as gradients multiply to -1

Question 12

a
$$\cos 50 = \frac{x^2 + 6.9^2 - 10.2^2}{2 \times 6.9 \times x}$$

$$x = -4.29,13.16$$

$$x > 0$$
 : $x = 13.2$

$$\mathbf{b} \qquad \frac{\sin 50}{10.2} = \frac{\sin \theta}{6.9}$$

$$\sin\theta = \frac{6.9\sin 50}{10.2}$$

$$\theta = 31.2^{\circ}$$

Remaining angle $180 - 50 - 31.2 = 98.8^{\circ}$

$$\frac{x}{\sin 98.8} = \frac{10.2}{\sin 50}$$

$$x = 13.2 \text{ cm}$$

Smallest angle is opposite the smallest side

$$\cos \theta = \frac{33^2 + 55^2 - 27^2}{2 \times 33 \times 55}$$
$$\theta = 21^{\circ}$$

Question 14

Using the null factor

a
$$(2, 0), (3, 0), (-2, 0), (-7, 0)$$

b
$$(-3, 0), (2, 0), (0, 0), (4, 0)$$

$$\mathbf{c}$$
 (-3, 0), (2, 0), (3, 0)

$$d$$
 (2, 0)

e
$$2x^2 - 3x + 2 = 0$$

 $(2x+1)(x-2) = 0$
 $2x+1=0$ or $x-2=0$
 $x = -\frac{1}{2}$ $x = 2$
x-intercepts $(-\frac{1}{2}, 0), (2, 0), (7, 0)$

f
$$y = (x^2 - x - 30)(4x^2 - 8x - 21)$$

= $(x - 6)(x + 50)(2x + 3)(2x - 7)$
 \therefore x-intercepts are $(-5, 0), (-\frac{3}{2}, 0), (\frac{7}{2}, 0), (6, 0)$

 $f_1: y = k_1 x$ is linear and passes through the origin

$$m = \frac{4 - (-4)}{16} = \frac{1}{2}$$

$$\Rightarrow k = \frac{1}{2}$$

 f_2 is linear

$$x + y + k_2 = 0 \implies y = -x - k_2$$

y-int
$$(0,10), (0,-k_2)$$

$$\Rightarrow k_2 = -10$$

 f_3 is quadratic with turning point at (0,0)

$$\left. \begin{array}{l}
 4 = k_3(1)^2 \\
 16 = k_3(2)^2
 \end{array} \right\} \qquad k_3 = 4$$

 f_4 is a quadratic with a turning point at (0,0)

$$y = (k_{\scriptscriptstyle A} x)^2 = 4x^2$$

$$k_4 = \pm 2$$

 f_5 is quadratic

$$y = k_5 x^2 + k_6 x + k_7$$

 k_7 is the y-intercept $\Rightarrow k_7 = 13$

$$k_5(x-3)^2 - 5 = k_5x^2 + k_6x + 13$$

When
$$x = 0$$
,

$$9k_5 - 5 = 13$$

$$9k_5 = 18$$

$$k_5 = 2$$

$$2(x-3)^2-5$$

$$=2(x^2-6x+9)-5$$

$$=2x^2-12x+13$$

$$\Rightarrow k_6 = -12$$

 f_6 is reciprocal

$$xy = k_8$$

$$(-5)\times(-2)=k_8$$

$$k_8 = 10$$

 f_7 is a cubic with one x-intercept

$$y = k_9(x + k_{10})^3 + k_{11}$$

 k_{11} is the vertical shift $\Rightarrow k_{11} = 1$

$$y = k_9(x-3)^2 + 1$$
 $\Rightarrow k_{10} = -3$

$$0 = k_{o}(-1) + 1$$

$$-1 = -1k_{0}$$

$$k_9 = 1$$

 f_8 is a quadratic

$$y = k_{12}(x + k_{13})^2 + k_{14}$$

 $(-k_{13}, k_{14})$ is the turning point

$$k_{13} = -3$$

 k_{14} is the vertical translation $\Rightarrow k_{14} = -5$

$$13 = k_{12}(0-3)^2 - 5$$

$$13 = 9k_{12} - 5$$

$$9k_{12} = 18$$

$$k_{12} = 2$$

 f_9 is another version for the cubic graph

$$y = k_{15}x^3 + k_{16}x^2 + k_{17}x + k_{18}$$

$$k_{18} = 1$$

$$k_{15}x^3 + k_{16}x^2 + k_{17}x + 1 = 1(x-3)^2 + 1$$

= $x^3 - 9x^2 + 27x + 26$

$$k_{15} = -1$$

$$k_{16} = -9$$

$$k_{17} = 27$$

 f_{10} is a sin graph with a mean value of 0

$$y = k_{19} \sin k_{20} x$$

The sin curve given is $5\sin 2x$

$$k_{19} \sin k_{20} x = 5 \sin 2x$$

$$k_{19} = 5$$

$$k_{20} = 2$$

 f_{11} is cosine graph with a horizontal translation and a mean value of 0

$$y = k_{21} \cos k_{22} (x - k_{23})$$

$$k_{23} = 45^{\circ}$$

$$k_{21} = 5$$

$$k_{22} = 2$$

$$f_{12} = k_{24} + k_{25} \sin k_{26} x$$

 k_{24} is a vertical shift $\Rightarrow k_{24} = 5$

 $k_{25} < 0$ due to shape of sin curve

As the amplitude is 4, $k_{25} = -4$

 k_{26} is the number of complete cycles in 2π

$$\Rightarrow k_{26} = 3$$

a
$$2x^3 + x^2 - 22x + 24 = (x - 2)(ax^2 + bx + c)$$

 $a = 2$

$$c = -12$$

b
$$(x-2)(2x^2+bx-12) = 2x^3+bx^2-12x-4x^2-2bx+24$$

 $2x^3+x^2-22x+24 = 2x^3+(b-4)x^2-(12+2b)x+24$

$$b-4=1$$
$$b=5$$

$$(x-2)(2x^2+5x-12) = (x-2)(2x-3)(x+4)$$

$$\therefore$$
 x-intercepts are (2, 0), (1.5, 0), (-4, 0)

- a y = f(x) + 5 represents a vertical translation of 5 $\therefore \max(-1, 26), \min(3, -6)$
- **b** y = f(x) 5 represents a vertical translation of -5 $\therefore \max(-1, 16), \min(3, -16)$
- **c** y = -f(x) represents a reflection in the y-axis $\therefore \max(1, 21), \min(-3, -11)$
- **d** y = -f(x) represents a reflection about the x-axis \therefore max (3, 11), min (-1, -21)
- **e** y = 3f(x) represents a vertical dilation by a factor of 3 \therefore max (-1, 63), min (3, -33)
- f y = f(2x) represents a horizontal dilation of factor $\frac{1}{2}$ $\therefore \max(-\frac{1}{2}, 21), \min(1.5, -11)$

- a x-intercept when y = 0 0 = (x+1)(x-2)(x-5) x = -1, 2, 5 $\Rightarrow (-1, 0), (2, 0), (5, 0)$
- b y-intercept when x = 0y = (0+1)(0-2)(0-5) x = 10 $\Rightarrow (10, 0)$
- c y = (x+1)(x-2)(x-5)(1,a) is on the curve a = (1+1)(1-2)(1-5)a = 8

d
$$y = (x+1)(x-2)(x-5)$$

(3, b) is on the curve

$$b = (3+1)(3-2)(3-5)$$
$$= -8$$

e
$$y = (x+1)(x-2)(x-5)$$

(4, c) is on the curve

$$c = (4+1)(4-2)(4-5)$$

$$=-10$$

f
$$y = (x-3)^2 - 4$$

Turning point (3, 4) and is a minimum

g y-intercept when
$$x = 0$$

$$y = (0-3)^2 - 4$$

$$\Rightarrow$$
 (0, 5)

h
$$y = (x-3)^2 - 4$$

(5,d) is on the curve

$$d = (5-3)^2 - 4$$

$$=0$$

i

Points of intersection x = -0.4, 2.4, 5

$$\cos\theta = \frac{10^2 + 10^2 - 16^2}{2 \times 10 \times 10}$$

$$\theta = 1.855 \text{ rads}$$

Area of segment

$$\frac{1}{2} \times 10^2 \times (1.855 - \sin 1.855)$$

Shaded area

$$\pi \times 10^2 - 44.756$$

$$= 269.4 \text{ cm}^2$$